
Understanding Consistency Maintenance in Service Discovery
Architectures during Communication Failure

Christopher Dabrowski, Kevin Mills, and Jesse Elder

National Institute of Standards and Technology
Gaithersburg, Maryland 20899 USA

Abstract. Current trends suggest future software systems will comprise collections of
components that combine and recombine dynamically in reaction to changing conditions.
Service-discovery protocols, which enable software components to locate available software
services and to adapt to changing system topology, provide one foundation for such dynamic
behavior. Emerging discovery protocols specify alternative architectures and behaviors, which
motivate a rigorous investigation of the properties underlying their designs. Here, we assess the
ability of selected designs for service-discovery protocols to maintain consistency in a distributed
system during catastrophic communication failure. We use an architectural-description language,
called Rapide, to model two different architectures (two-party and three-party) and two different
consistency-maintenance mechanisms (polling and notification). We use our models to
investigate performance differences among combinations of architecture and consistency-
maintenance mechanism as interface-failure rate increases. We measure system performance
along three dimensions: (1) update responsiveness (How much latency is required to propagate
changes?), (2) update effectiveness (What is the probability that a node receives a change?), and
(3) update efficiency (How many messages must be sent to propagate a change throughout the
topology?). We use Rapide to understand how failure-recovery strategies contribute to
differences in performance. We also recommend improvements to architectural-description
languages.

Keywords: service-discovery protocols, software performance, software architecture,
architectural-description languages

Dabrowski & Mills NIST WOSP 2002 Submission 1/25/2002

 1

1. Introduction
Growing deployment of wireless communications, implying greater user mobility, coupled with
proliferation of personal digital assistants and other information appliances, foretell a future
where software components can never be quite sure about the network connectivity available,
about the other software services and components nearby, or about the state of the network
neighborhood a few minutes in the future. In extreme situations, as found for example in military
applications [1], software components composing a distributed system may find that cooperating
components disappear due to physical or cyber attacks or due to jamming of communication
channels or movement of nodes beyond communications range. Such environments demand new
analysis approaches and tools to design and test software.

Our work considers how one might rigorously assess the robustness of distributed software
systems in response to faults, such as process, node, and link failures. More particularly we seek
techniques to test and measure the behavior and resilience of dynamic distributed systems, and to
evaluate alternative approaches to design such systems. In this paper, we compare and contrast
models of alternative service-discovery architectures commonly found in publicly available,
natural-language specifications. We use an architectural-description language (ADL) to
transform the specifications into executable models that precisely represent system structure and
behavior. To provide our models with realistic behaviors, we incorporate consistency-
maintenance mechanisms adapted from two specifications: Jini™ Networking Technology [4]
and Universal Plug-and-Play (UPnP) [3]. We combine various architectures and consistency-
maintenance mechanisms, and then measure performance and overhead while attempting to
propagate changes during communication failures. Further, we show how the use of an
appropriate architecture-modeling tool helps to explain causes underlying the measured
performance.

Our method builds on earlier work [14] where we derived benefits by creating dynamic
models from specifications for service-discovery protocols. Dynamic models enable us to
understand collective behavior among distributed components, and to detect ambiguities,
inconsistencies and omissions in specifications. In this paper, we apply the same method: (1)
construct an architectural model of each discovery protocol, (2) identify and specify relevant
consistency conditions that each model should satisfy, (3) define appropriate metrics for
comparing the behavior of each model, (4) construct relevant scenarios to exercise the models
and to probe for violations of consistency conditions, and (5) compare results from executing
similar scenarios against each model. To carry out the method, we rely on Rapide [13], an ADL
developed at Stanford University. Rapide represents behavior in a form suitable to investigate
distributed systems, and comes with an accompanying suite of analysis tools that can execute a
specification and can record and visualize system behavior.

The remainder of the paper is organized in six sections. We begin, in Section 2, by
introducing service-discovery protocols and architectures, including a description of procedures
to maintain consistency in replicated information. Section 2 also discusses various failures that
can interfere with consistency maintenance. In Section 3, we outline some techniques, included
in our models, to recover from failures. Section 4 defines an experiment, and related metrics, to
compare the performance and overhead exhibited by selected pairings of architecture and
consistency-maintenance mechanism while attempting to propagate changes during interface
failures. In Section 5, we present results from the experiment, and we discuss causes underlying
some of the results. In Section 6, we outline some future work to evaluate service-discovery
architectures and protocols during message loss and node failure. We conclude in Section 7.

Dabrowski & Mills NIST WOSP 2002 Submission 1/25/2002

 2

2. Service Discovery Protocols and Architectures
Service-discovery protocols enable software components in a network to discover each other,
and to determine if discovered components meet specific requirements. Further, discovery
protocols include consistency-maintenance mechanisms, which can be used by applications to
detect changes in component availability and status, and to maintain, within some time bounds, a
consistent view of components in a network. Many diverse industry activities explore different
approaches to meet such requirements, leading to a variety of proposed designs for service-
discovery protocols [2-12]. Some industry groups approach the problem from a vertically
integrated perspective, coupled with a narrow application focus. Other industry groups propose
more widely applicable solutions. For example, a team of researchers and engineers at Sun
Microsystems designed Jini Networking Technology [4], a general service-discovery mechanism
atop JavaTM, which provides a base of portable software technology. As another example, a
group of engineers at Microsoft and Intel conceived Universal Plug-and-Play [3] in an attempt to
extend plug-and-play, an automatic intra-computer device-discovery and configuration protocol,
to distributed systems. The proliferation of service discovery protocols motivates deeper analyses
of their designs.

To help us compare
designs, we developed a
general structural model,
documented using the UML
(Unified Modeling Language).
Our general model provides a
basis for comparative analysis
of various discovery systems
by representing the major
architectural components with
a consistent and neutral

terminology (see first column in Table 1). The main components in our general model include:
(1) service user (SU), (2) service manager (SM), and (3) service cache manager (SCM), where
the SCM is an optional element not supported by all discovery protocols. These components
participate in the discovery, information-propagation, and consistency-maintenance processes
that comprise discovery protocols. A SM maintains a database of service descriptions, (SDs),
where each SD encodes the essential characteristics of a particular service or device (Service
Provider, or SP). Each SD contains the identity, type, and attributes that characterize a SP. Each
SD also provides up to two interfaces (an application-programming interface and a graphic-user
interface) to access a service. A SU seeks SDs maintained by SMs that satisfy specific
requirements. Where employed, the SCM operates as an intermediary, matching advertised SDs
of SMs to SD requirements provided by SUs. Table 1 shows how these general concepts map to
specific concepts from Jini, UPnP, and the Service Location Protocol (SLP) [6]. The behaviors
by which SUs discover and maintain consistency in desired SDs depend partly upon the service-
discovery architecture employed.

2.1 Alternative Architectures for Service Discovery. Broadly speaking, system architecture
comprises a set of components, and the connections among them, along with the relationships
and interactions among the components. In our application, we represent the architecture of a
discovery system using an architectural model, which expresses structure (as components,
connections, and relations), interfaces (as messages received by components), behavior (as

Service RegistrationDevice/Service DescriptionService ItemService Description

Directory Service Agent
(optional)

not applicableLookup ServiceService Cache Manger

Service URL
Service Type
Service Attributes
Template URL
Template URL

Universal Unique ID
Device/Service Type
Device/Service Schema
Presentation URL
Control/Event URL

Service ID
Service Type
Attribute Set
Service Applet
Service Proxy

Identity
Type
Attributes
User Interface
Program Interface

ServiceDevice or ServiceServiceService Provider

Service AgentRoot DeviceService or
Device Proxy

Service Manager

User AgentControl PointClientService User

SLPUPnPJiniGeneric Model

Service RegistrationDevice/Service DescriptionService ItemService Description

Directory Service Agent
(optional)

not applicableLookup ServiceService Cache Manger

Service URL
Service Type
Service Attributes
Template URL
Template URL

Universal Unique ID
Device/Service Type
Device/Service Schema
Presentation URL
Control/Event URL

Service ID
Service Type
Attribute Set
Service Applet
Service Proxy

Identity
Type
Attributes
User Interface
Program Interface

ServiceDevice or ServiceServiceService Provider

Service AgentRoot DeviceService or
Device Proxy

Service Manager

User AgentControl PointClientService User

SLPUPnPJiniGeneric Model

Table 1. Mapping concepts among various service-discovery systems.

Dabrowski & Mills NIST WOSP 2002 Submission 1/25/2002

 3

actions taken in response to messages received, including generation of new messages), and
consistency conditions (as Boolean relations among state variables maintained across different
components). Our initial analysis of six distinct discovery systems revealed that most designs use
one of two underlying architectures: two-party and three-party.

2.1.1 Two-Party Architectures. A
two-party architecture consists of two
major components: SMs and SUs. In
this study, we use a two-party
architecture arranged in a simple
topology consisting of one SM and
five SUs, as depicted in Figure 1. To
animate the architecture, we chose
behaviors for discovery, information
propagation, and consistency
maintenance, as described in the
specification for UPnP. Upon startup,

each SU and SM engages in a discovery process to locate other, relevant components within the
network neighborhood. In a lazy-discovery process, each SM periodically announces the
existence of its SDs over the UPnP multicast group, used to send messages from a source to a
group of receivers. Upon receiving these announcements, SUs with matching requirements use a
HTTP/TCP (HyperText Transfer Protocol/transmission-control protocol) unicast link (for
message exchanges between two specific parties) to request, directly from the SM, copies of the
SDs associated with relevant SPs. The SU stores SD copies in a local cache. Alternatively, the
SU may engage in an aggressive-discovery process, where the SU transmits SD requirements, as
Msearch queries, on the UPnP multicast group. Any SM holding a SD with matching
requirements may use a HTTP/UDP (user-datagram protocol) unicast link to respond (after a
jitter delay) directly to the SU. Whenever a UPnP SM responds to an Msearch query (or
announces itself), it does so with a train of (3 + 2d + k) messages, where d is the number of
distinct devices and k is the number of unique service types managed by the SM. For each
appropriate response, the SU uses a HTTP/TCP unicast link to request a copy of the relevant
SDs, caching them locally.

To maintain a SD in its local cache, a SU expects to receive periodic announcements from
the relevant SM. In UPnP, the SM announces the existence of SDs at a specified interval, known
as a Time-to-Live, or TTL. Each announcement specifies the TTL value. If the SU does not
receive an announcement from the SM within the TTL (or a periodic SU Msearch does not
succeed within that time), the SU may discard the discovered SD. We selected the minimum
TTL of 1800 s, as recommended by the UPnP specification. (See Tables 2 and 4 for a summary
of relevant parameter values used in this paper.)

2.1.2 Three-Party Architectures. A three-party architecture consists of SMs, SUs, and SCMs,
where the number of SCMs represents a key variable. In this study, we model a three-party
architecture with one SM and five SUs, as shown in Figure 2. We anticipate that under failure
conditions, increasing the number of SCMs will increase the chance of successful rendezvous
among components, leading to better propagation of information updates from SMs to SUs. To
investigate this, we vary the number of SCMs in our three-party architectural model. To animate
our three-party model, we chose behaviors described in the Jini specification.

Fig. 1 Two-party service-discovery architecture deployed in a six-
node topology: five service users (SUs) and one service manager
(SM).

HTTP/TCP and HTTP/UDP

Service
User

Service
Manager

UPnP Multicast Group

Unicast Links

HTTP/TCP and HTTP/UDP

Service
User

Service
User

Service
Manager

UPnP Multicast Group

Unicast Links

Dabrowski & Mills NIST WOSP 2002 Submission 1/25/2002

 4

In Jini, the discovery process
focuses upon discovery by SMs and
SUs of any intermediary SCMs that
exist in the network neighborhood.
Elsewhere [14], we describe these
procedures in detail; here, we simply
summarize. Upon initiation, a Jini
component enters aggressive
discovery, where it transmits probes
on the aggressive-discovery
multicast group at a fixed interval (5
s recommended) for a specified
period (seven times recommended),
or until it has discovered a sufficient
number of SCMs. Upon cessation of
aggressive discovery, a component
enters lazy discovery, where it listens
on the lazy-discovery multicast

group for announcements sent at intervals (120 s recommended) by SCMs. Our three-party
model implements both the aggressive and lazy forms of Jini multicast discovery.

Once discovery occurs, a SM deposits a copy of the SD for each of its services on the
discovered SCM. The SCM caches this deposited state, but only for a specified length of time, or
TTL. To maintain a SD on the SCM beyond the TTL, a SM must refresh the SD. In this way, if
the SM fails, then the SCM can purge any SDs deposited by the SM. To make behavior as
consistent as possible across our models for both the two-party and three-party architectures, we
selected 1800 s as TTL for a SD to be cached by a SCM. Using these techniques, SUs and SPs
rendezvous through SDs registered by SMs with particular SCMs, where the SCMs are found
through a discovery process. The SCMs match SDs provided by SMs to SU requirements, and
forward matches to SUs, which then access the appropriate SPs.

 2.2 Consistency Maintenance in Service Discovery Architectures. After initial discovery
and information propagation (through SDs), service-discovery protocols provide consistency-
maintenance mechanisms that applications can use to ensure that changes to critical information
propagate throughout the system. Critical information may concern service availability and
capacity, or updates to descriptive information regarding service capabilities, which may be
necessary for a SU to effectively use a discovered service. In our study, we consider two basic
consistency-maintenance mechanisms: polling and notification, along with accompanying
mechanisms to propagate new information.

2.2.1 Polling. In polling, a SU periodically sends queries to obtain up-to-date information
about a SD that was previously discovered, retrieved, and cached locally. In a two-party
architecture, the SU issues the query directly to the SM from which the SD was obtained. In this
study, we use the UPnP HTTP Get request mechanism to poll the SM to retrieve a SD associated
with a specific URL (uniform-resource locator). In response, the SM provides a SD containing a
list of all supported services, including their relevant attributes.

Polling in a three-party architecture consists of two independent processes. In one process, a
SM sends a ChangeService request to propagate an updated SD to each SCM where the SD was
originally cached. In the second process, each SU polls relevant SCMs by periodically issuing a

Service
Manager

Service
User

Service
Cache

Manager

Aggressive-Discovery Multicast Group

Remote Method Invocation

Unicast Links

Lazy-Discovery Multicast Group

Optional, 2nd SCMService
Manager

Service
User

Service
Cache

Manager

Aggressive-Discovery Multicast Group

Remote Method Invocation

Unicast Links

Lazy-Discovery Multicast Group

Optional, 2nd SCM

Fig. 2 Three-party service-discovery architecture deployed in a seven-
or eight-node topology: five service users (SUs), a service manager
(SM), and a service cache manager (SCM), with an optional 2nd SCM.

Dabrowski & Mills NIST WOSP 2002 Submission 1/25/2002

 5

FindService request, effectively a query with a set of desired SD requirements. The SCM replies
with a MatchFound that contains the relevant information for any matching SDs. In our study,
we adopt a 180-second interval for polling in both architectures.

2.2.2 Notification. In notification, immediately after an update occurs, a SM sends events that
announce a SD has changed. To receive events about a SD of interest, a SU must first register for
this purpose. In the two-party architecture, the SU registers directly with a SM. We model this
procedure using the UPnP event-subscription mechanism, where the SU sends a Subscribe
request, and the SM responds by either accepting the subscription, or denying the request. The
subscription, if accepted, is retained for a TTL, which may be refreshed with subsequent
Subscribe requests from the SU. In our experiment, we chose 1800 s as TTL for event
subscriptions in both architectures.

In a three-party architecture, a SU registers with a SCM to receive events using a procedure
analogous to that used by a SM to propagate a SD. As with SD propagation, the SCM grants
event registrations for a TTL, which may be refreshed. When a SD update occurs, the SM first
issues a ChangeService request to all SCMs to which it originally propagated the SD. The SCM
then issues a MatchFound to propagate the event to all SUs that have registered to receive events
about the SD.

2.3 The Nature and Import of Failures. The foregoing discussion, while oversimplified,
highlights the complexity inherent in discovery protocols. Additional complexity arises from
uncertainty, as nodes, processes, and links can appear and disappear without warning. Discovery
protocols must include behavior to cope with such changes. In this section, we address the nature
of various failures that can arise, and we consider the import of such failures on the behavior of
discovery protocols, and on the application software that depends upon them.

2.3.1 Classifying Failures. In our research, we focus particularly on failures that can exist
within a hostile environment, such as encountered during military or emergency-response
operations. We can classify such failures in two general categories: (1) communication failures
and (2) process failures. Communication failures can arise due to enemy jamming, or other
interference, due to congestion, due to physical severing of cables, due to improperly configured
or sabotaged routing tables, or due to multi-path fading as a node moves across a terrain. We can
subdivide communication failures into three classes: interface failures, message loss, and path
failures. A communication interface in a node may fail fully (both transmit and receive) or
partially (either transmit or receive). All outbound messages from an interface will be lost when
the transmitter fails, while all inbound messages will be lost when the receiver fails. Message
loss, a less severe failure, implies that individual messages may be lost, either sporadically or in
bursts. Path loss appears as a blocked communication route between two nodes, or areas, in the
network. A path can be blocked in one or both directions.

Process failures can be caused by enemy bombardments or cyber attacks, by programming
errors, or by hardware failures. We can subdivide process failures into node and thread failures.
During a catastrophic failure, processing in a node ceases, and the node must reinitialize before
processing resumes. Some information maintained by the node may persist across the failure,
while other information may be lost. The nature and condition of persistent information could
prove crucial to a node’s behavior after processing resumes. Of course, the node might never
reappear. Thread failures, while less catastrophic, can be more troublesome than node failures. A
node might rely on certain long-running threads to react to events from other nodes. Failure of
selected threads can interfere with the operation of the node, as well as other nodes in a

Dabrowski & Mills NIST WOSP 2002 Submission 1/25/2002

 6

distributed system. In some cases, a node can appear to be present, while being effectively
inoperable.

2.3.2 Failure Responses by Service Discovery Systems. In service-discovery systems, failure-
recovery responsibilities are divided among three parties: (1) lower-layer protocols, (2) discovery
protocols, and (3) applications. Discovery protocols and applications use the services of three
classes of lower-layer protocols: (1) unreliable unicast protocols, (2) unreliable multicast
protocols, and (3) reliable unicast protocols. Unreliable protocols, whether unicast or multicast,
neither recover nor signal lost messages; thus, neither source nor destination will learn of a loss.
Further, multicast protocols exchange messages along a tree of receivers. For this reason, a
multicast message might be received by some nodes, but not by others. A failure near a multicast
source, prevents messages from being received by any node in the multicast tree, while a failure
near a receiver, prevents messages from being received by only a single node in the multicast
tree. Of course, failures at intermediate points in the multicast tree could result in messages being
lost to subsets of receivers. Since unreliable protocols provide no guarantees, recovery must be
provided by mechanisms at a higher-layer.

Reliable unicast protocols include mechanisms that attempt to ensure delivery of messages
by detecting and retransmitting lost messages. Of course, the reliability schemes may eventually
give up if too many retransmissions are needed (which might indicate node or path failure). In
such cases, the reliable unicast protocol will signal to a higher layer that a message could not be
delivered. Some ambiguity does exist, however, when using reliable unicast protocols to send
request-response message pairs, as is the case for discovery systems. After submitting a request
through a reliable unicast protocol, a requesting process might wait for a corresponding response
from a remote process. For example, Jini can use Remote Method Invocation (RMI) over TCP to
invoke a method on a remote object, and to receive a response. Similarly, UPnP uses TCP to
submit HTTP requests and receive HTTP responses. In such cases, the RMI layer or the TCP
layer can signal a remote exception (REX). The requesting process cannot determine whether a
REX was caused by failure to transmit the request or by failure to receive a response from the
remote process. The responding process has more information, as it does not receive a REX
when an inbound request fails, but does receive a REX when its outbound response fails. In
essence, while reliable unicast protocols attempt to deliver messages in the face of various
communication failures, ultimately the reliability mechanisms might prove insufficient, causing a
higher-layer process to be notified of the failure. In such cases, the higher-layer process is free to
determine an appropriate failure-recovery strategy.

3. Modeling Failure Recovery Strategies in Service Discovery Architectures
Our architectural models incorporate three classes of failure-recovery strategies: (1) recovery by
lower-layer protocols, (2) recovery by discovery protocols, and (3) recovery by application
software. For each class, we outline the strategies (see Table 2) included in our models.

3.1 Recovery by Lower-Layer Protocols. Our models operate over two types of channels:
unreliable, simulating the UDP in both multicast and unicast forms, and reliable, simulating the
TCP. In UDP simulation, we discard messages lost due to transmission errors, and we discard
messages lost due to path and interface failures. During path failure, messages can be discarded
in one or both directions. During interface failure, we discard all messages sent from a node with
a failed transmitter, and we discard all messages inbound for a node with a failed receiver.
Neither sender nor receiver learns the fate of lost messages.

In the TCP simulation, our model proves more complex. For messages lost to transmission
errors, we schedule a retransmission (roughly within a round-trip time, or RTT). We increase the

Dabrowski & Mills NIST WOSP 2002 Submission 1/25/2002

 7

RTT by about 25% with each successive retransmission. If successive retransmissions exceed a
threshold (three in the current study), then we discard the message and issue a REX. For
messages lost to interface or path failure, we model TCP connection establishment procedures by
discarding the message and waiting for a period, uniformly distributed between an upper and
lower bound (30-75 s in the current study), then we signal a REX. When discarding a request, we
signal a REX to the requester, but when discarding a response, we signal a REX to both parties.

3.2 Recovery by Discovery
Protocols. Discovery protocols
include built-in robustness
measures to deal with the
possibilities of UDP message
loss and node failure. Discovery
protocols specify periodic
transmission of key messages.
For example, Jini requires a node
to engage in aggressive discovery
on startup, and then to enter lazy
discovery, where all SCMs
periodically announce their
presence. In a similar lazy
discovery, UPnP requires SMs to
periodically announce their
presence. While not specifying
aggressive discovery, UPnP

permits SUs to issue Msearch queries at any time. To compensate for the different
announcement intervals recommended for Jini and UPnP, we chose to have UPnP SUs issue
Msearch queries every 120 s, but only after a SU purges a SD from its local cache. Once a SU
regains its desired SD, the related Msearch queries cease. Whenever a UPnP SM announces
itself or responds to an Msearch query, it sends n copies of each message, where n is a
retransmission factor (two in the current study) recommended by UPnP to compensate for
possible UDP message loss. In both Jini and UPnP, each announcement includes a TTL.
Receiving nodes can cache the information in the announcement until the TTL expires; then the
information must be purged from the cache. In this way, each node in the system eliminates
residual information about failed or unreachable nodes. Our models incorporate these failure-
recovery behaviors.

3.3 Recovery by Application Software. When discovery nodes communicate over a reliable
channel, a REX may occur. Response to a REX is left to the application. In our models,
depending on the situation, we implement three different strategies: (1) ignore the REX, (2) retry
the operation for some period, and (3) discard knowledge. The retry strategy attempts to recover
from transient failures. The discard strategy, which occurs following repeated failure of the retry
strategy, relies upon discovery mechanisms to recover from more persistent failures.

3.3.1 Ignore the REX. In many cases, we simply ignore a REX. In general, our models ignore
a REX received when attempting to respond to a request. A SU can ignore a REX received in
response to a poll, FindService or HTTP Get, because the poll recurs at an interval. The SCM
(three-party model) or the SM (two-party model) also ignores a REX received while attempting
to issue a notification. This behavior, which is described in both the Jini and UPnP

Table 2. Provides a summary of the division of recovery
responsibilities and strategies across lower-layer protocols, discovery
protocols, and application software, as implemented within our
models for two- and three-party architectures.

Three-Party
Architecture (Jini)

Two-Party
Architecture (UPnP)

Recovery
Mechanism

Responsible
Party

SU and SM: purge SCM after
540 s of continuous
REX

SU: purge SD after failure to
receive SM announcement
within 1800 s

Discard
Knowledge

SM: depositing or refreshing SD
copy on SCM retry in 120s

SU: registering and refreshing
notification requests with SCM
retry in 120 s

SU: HTTP Get after discovery
retry in 180 s (retries < 3)

Subscribe requests retry in
120s

Retry after
REX

SU: FindService Poll
SCM: Notification

SU: HTTP Get Poll
SM: Notification

Ignore REX

Application
Software

SU and SM: issue seven probes
(at 5 s intervals) only
during startup

SU: issues Msearch every 120 s
(after purging SD)

Aggressive
Discovery

SCM: announces every 120 sSM: announces with n (3+2d+k)
messages every 1800 s

Lazy
Discovery

Discovery
Protocols

Issue REX in 30-75 sIssue REX in 30-75 sTCP
No recoveryNo recoveryUDPLower-Layer

Protocols

Three-Party
Architecture (Jini)

Two-Party
Architecture (UPnP)

Recovery
Mechanism

Responsible
Party

SU and SM: purge SCM after
540 s of continuous
REX

SU: purge SD after failure to
receive SM announcement
within 1800 s

Discard
Knowledge

SM: depositing or refreshing SD
copy on SCM retry in 120s

SU: registering and refreshing
notification requests with SCM
retry in 120 s

SU: HTTP Get after discovery
retry in 180 s (retries < 3)

Subscribe requests retry in
120s

Retry after
REX

SU: FindService Poll
SCM: Notification

SU: HTTP Get Poll
SM: Notification

Ignore REX

Application
Software

SU and SM: issue seven probes
(at 5 s intervals) only
during startup

SU: issues Msearch every 120 s
(after purging SD)

Aggressive
Discovery

SCM: announces every 120 sSM: announces with n (3+2d+k)
messages every 1800 s

Lazy
Discovery

Discovery
Protocols

Issue REX in 30-75 sIssue REX in 30-75 sTCP
No recoveryNo recoveryUDPLower-Layer

Protocols

Dabrowski & Mills NIST WOSP 2002 Submission 1/25/2002

 8

specifications, depends upon reliable lower-layer protocols to provide robustness for
notifications. Notifications do include sequence numbers that allow a receiving node to
determine whether or not previous notifications were missed.

3.3.2 Retry the Operation. In our models, we retry selected operations in the face of a REX.
The UPnP specification separates the operation of discovering a resource from obtaining a
description of the resource (Jini combines these operations). Without a description, the resource
cannot be used. For this reason, in our two-party model, a SU must issue a HTTP Get to obtain a
description. If no description arrives within 180 s, then our model retries the HTTP Get. If
unsuccessful after three attempts, the SU ceases the retries, but sets a flag reminding itself to
reissue a HTTP Get when the resource is next announced. Our three-party model, based on Jini,
also contains a retry strategy, but associated with attempts to register or change a SD with a
SCM. In these cases, the SM retries a ChangeService or ServiceRegistration 120 s after receiving
a REX. Similarly, when a SU receives a REX (from either a SM or SCM) in response to a
request to register for notification, the SU retries the registration in 120 s. These retries occur
until some time bounds, after which the SM discards knowledge of the SCM.

3.3.3 Discard Knowledge. Both our two-party and three-party models include the possibility
that an application can discard knowledge of previously discovered nodes. In UPnP, after failure
to receive announcements from the SM within a TTL, a SU discards a SM and any related SDs.
We implement this behavior in our two-party model. In Jini, the specification states that a
discovering entity may discard a SCM with which it cannot communicate. In our three-party
model, a SM or SU deletes a SCM if it receives only REXs when attempting to communicate
with the SCM over a 540-s interval. After discarding knowledge of a SM (UPnP) or SCM (Jini),
all operations involving the node cease until it is rediscovered, through either lazy discovery (Jini
or UPnP announcements) or aggressive discovery (UPnP Msearch queries).

4. Experiment Definition and Metrics
In this paper, we focus on using service-discovery architectures and protocols to propagate
changes in a distributed system. Specifically, we investigate the following question: How do
alternative service-discovery architectures, topologies, and consistency-maintenance mechanisms
perform under deadline during interface failure? To address this question, we deploy a two-party
and three-party architecture (recall Figures 1 and 2), each in a topology that includes one SM and
five SUs. In the three-party case, we use two topologies, one with one SCM and another with
two SCMs. To establish initial conditions, we exercise each topology until discovery completes,
and the initial information (a SD) propagates to all SUs. To begin the experiment, we introduce a
change in the SD at the SM, and we establish a deadline, D, before which the change must
propagate to all SUs. We measure the number of messages exchanged and the latency required to
propagate the new information, or until D, under two different consistency-maintenance
mechanisms: polling and notification. We repeat this experiment while varying the percentage of
interface-failure time for each node up to 75% (in increments of 5%). We provide further details
below.

4.1 Combining Architectures and Consistency-Maintenance Mechanisms. To compare
change propagation in two- and three-party architectures, we use our models to combine the
architectures, including relevant behaviors from the UPnP and Jini protocols, with different
consistency-maintenance mechanisms. For the two-party architecture, we adopt the polling and
notification mechanisms discussed earlier, using the UPnP protocol as a basis. In the three-party
architectures (both one-SCM and two-SCM), we also use polling and notification mechanisms,

Dabrowski & Mills NIST WOSP 2002 Submission 1/25/2002

 9

but in a form consistent with behaviors defined in the Jini specification. Table 3 depicts the six
combinations. Each experiment runs one combination from time zero until D, while introducing
a particular interface-failure rate at each node. Each experiment aims to restore consistency
among the changed SD held by the SM and the cached copies of the SD held by all of the SUs.

4.2 Tracking Consistency. To track consistency in our models, we employ property analysis
(introduced in a previous paper [14]). We posit a single consistency condition: service attributes
for a SD discovered by a SU should have the same values as the attributes of the SD being
maintained by the SM that manages the SD. More formally,

FOR All (SM, SU, SD)

 SD [Attributes1] isElementOf SM managed-services
 (SM, SD [Attributes2]) isElementOf SU discovered-services

 implies Attributes1 = Attributes2.

We incorporate this consistency condition directly into our models, and check it using Rapide
procedural code. These checks form the basis for our measurements.

4.3 Generating Interface Failures.
We set aside an interval, up to time Q,
to complete initial discovery and
information propagation. In our
experiments, D = 5400 s and Q = 100
s. Then, we choose a time, randomly
distributed on the uniform interval Q
to D/2, to introduce a change into the
SD on the SM. We also choose a time,
randomly distributed on the uniform
interval Q to [D - (D x F)], for each
node to suffer an interface failure.

Here, F is the interface-failure rate. When activating each interface failure, we choose with equal
likelihood that the transmitter, receiver, or both fail. Once activated, each failure remains in
effect for a duration of D x F, after which the failure is remedied. Table 4 summarizes most of
the relevant parameters and values for our experiments.

4.4 A Sample Run. Figure 3 shows partial results from a sample run for the three-party
architecture, with two SCMs, using notification as the consistency-maintenance mechanism. In
this run, F was 0.05, and so each failure occurred between 100 and 5130 s [D - (D x F)], and
lasted for 270 s (D x F). Figure 3 shows the time when each interface failed, and recovered. The
performance section of the figure lists two times for each node: loss of consistency and
restoration of consistency, or D where inconsistency remains. The figure also lists two message
counts for each node: messages sent to restore consistency and total messages sent. For each SM
and SCM, the first message count includes messages sent while any SU remains inconsistent. In
this sample run, SUs 1, 2, 4, and 5 and both SCMs became consistent quickly, within 0.00109 s,
which represents the time necessary to propagate the change from the SM to at least one SCM,
match the changed SD registration to all the SU notification requests registered on the SCM, and
forward the matches. However SU 3, whose receiver failed at an inopportune time, never heard
the notification and continued in an inconsistent state for the remainder of the run. This run
illustrates how lack of robustness in the notification mechanism can lead to prolonged
inconsistent states.

Notification (with service registration and
notification registration on SCM)

JiniThree-Party (Dual SCM)
Polling (with service registration on SCM)JiniThree-Party (Dual SCM)

Notification (with service registration and
notification registration on SCM)

JiniThree-Party (Single SCM)
Polling (with service registration on SCM)JiniThree-Party (Single SCM)

Notification (with notification registration
on SM)

UPnPTwo-Party
PollingUPnPTwo-Party

Consistency-Maintenance MechanismProtocol BasisArchitectural Variant

Notification (with service registration and
notification registration on SCM)

JiniThree-Party (Dual SCM)
Polling (with service registration on SCM)JiniThree-Party (Dual SCM)

Notification (with service registration and
notification registration on SCM)

JiniThree-Party (Single SCM)
Polling (with service registration on SCM)JiniThree-Party (Single SCM)

Notification (with notification registration
on SM)

UPnPTwo-Party
PollingUPnPTwo-Party

Consistency-Maintenance MechanismProtocol BasisArchitectural Variant

Table 3. Experiments compare these combinations of
architecture, topology, protocol, and consistency-maintenance
mechanism.

Dabrowski & Mills NIST WOSP 2002 Submission 1/25/2002

 10

4.5 Metrics. We use the data
collected from experiment runs to
compute three metrics: update
responsiveness, update effectiveness,
and update efficiency. We define these
below.

4.5.1 Update Responsiveness.
Assuming information is created at a
particular time and must be propagated
by a deadline, then the difference
between the deadline and the creation
time represents available time in which
to propagate the information. Update
Responsiveness, R, measures the
proportion of the available time
remaining after the information is
propagated. More formally, let D be a
deadline by which we wish to
propagate information to each SU-
node n in a service discovery topology.
Let tC be the creation time of the
information that we wish to propagate,
where tC < D. Let tU(n) be the time that
the information is propagated to SU n,
where n = 1 to N, and N is the total
number of SUs in a service discovery
topology. Define change-propagation
latency (L) for an SU n as: Ln = (tU(n) -
tC)/(max(D, tU(n)) – tC). This is
effectively the proportion of available
time used to propagate the change to
SU n. The numerator represents the
time at which the SU achieved
consistency (e.g., satisfied the
consistency condition) after the update
occurred. The denominator represents
the time available to propagate the
change. The term max(D, tU(n))
accounts for cases where tU(n) > D.
Define R for a SU n as: Rn = 1 – Ln. Rn
is the proportion of available time
remaining after propagating a change
to SU n.

4.5.2 Update Effectiveness. Update Effectiveness, U, measures the probability that a change
will propagate successfully for a given SU, i.e., tU(n) < D. More formally, assuming the
definitions related to R hold, let X represent the number of runs during which a particular

100 us for cache items
10 us for other items

Per-item processing
delay

10-100 us uniformTCP transmission delay

10 us constantUDP transmission
delay

Transmission and
processing delays

5% increments of 5400 s
from 0 to 75%

Failure duration

Transmitter, receiver, or
both with equal likelihoodFailure scope

Once per run for each nodeFailure incidence

Interface failure
parameters

After 540 s with only REXSM or SU purges SCM
120 sAnnounce interval

5 s (7 times)Probe intervalJini-specific
behavior for three-
party architecture

At TTL expirationSU purges SD
120 sMsearch query interval
1800 sAnnounce intervalUPnP-specific

behavior for two-
party architecture

120 sTime to retry after
REX (if applicable)

1800 sRegistration TTL
180 sPolling interval

Behavior in both
two- and three-
party architectures

ValueParameter

100 us for cache items
10 us for other items

Per-item processing
delay

10-100 us uniformTCP transmission delay

10 us constantUDP transmission
delay

Transmission and
processing delays

5% increments of 5400 s
from 0 to 75%

Failure duration

Transmitter, receiver, or
both with equal likelihoodFailure scope

Once per run for each nodeFailure incidence

Interface failure
parameters

After 540 s with only REXSM or SU purges SCM
120 sAnnounce interval

5 s (7 times)Probe intervalJini-specific
behavior for three-
party architecture

At TTL expirationSU purges SD
120 sMsearch query interval
1800 sAnnounce intervalUPnP-specific

behavior for two-
party architecture

120 sTime to retry after
REX (if applicable)

1800 sRegistration TTL
180 sPolling interval

Behavior in both
two- and three-
party architectures

ValueParameter

Table 4. Values for the most relevant parameters used in our
experiments.

Rate - 5
Run number - 21

SM 1 OUT Interface down 365, up 635

SCM 1 OUT Interface down 2417, up 2687
SCM 2 IN & OUT Interface down 519, up 789

SU 1 IN Interface down 2238, up 2508
SU 2 IN Interface down 3256, up 3526
SU 3 IN Interface down 207, up 477
SU 4 OUT Interface down 2876, up 3146
SU 5 IN Interface down 4478, up 4748

Performance:

SM 1 346.00000 346.00000 6 17
SCM 1 346.00000 346.00016 61 102
SCM 2 346.00000 346.00015 61 105
SU 1 346.00000 346.00109 0 11
SU 2 346.00000 346.00109 0 11
SU 3 346.00000 5400.00000 4 11
SU 4 346.00000 346.00109 0 11
SU 5 346.00000 346.00114 0 11

Fig. 3. Console output from one sample experiment run:
three-party architecture, two SCMs, notification used to
maintain consistency, F = 5%, Q =100 s, and D = 5400 s.

Dabrowski & Mills NIST WOSP 2002 Submission 1/25/2002

 11

topology is observed under identical conditions. Recalling that N is the total number of SUs in a
topology, define the number of SUs observed under identical conditions as: O = X .N. Define the
probability that tU(n) < D as: P(F) = (count(Ri,j == 0))/O, where i = 1..N and j = 1..X. Define U for
the given conditions as: U = 1 – P(F).

4.5.3 Update Efficiency. Given a specific service-discovery topology, examination of the
available architectures (two-party and three-party) and consistency-maintenance mechanisms
(polling and notification) reveals a minimum number of messages, M, that must be sent to
propagate a change to all SUs. In our topology, M (M = 7) occurs when using notification to
propagate information in a three-party architecture with one SCM. Update Efficiency, E, can be
defined as the ratio of M to the actual number of messages observed. More formally, let S be the
number of messages sent while attempting to propagate a change from a SM to SUs in a given
run of the topology. Define average E as: Eavg = (sum(M/Sk))/X, where k = 1..X.

5. Results and Discussion
In this section, after showing results from our experiments, we consider the relative performance
of our models. We propose reasons for performance differences, subject to further analysis and
verification by on-going research. We also use Rapide to examine selected saw-tooth behaviors,
and we outline some suggestions for improving ADLs (based on our experiences with Rapide).

5.1 Results. In a series of six graphs, which have identical abscissas (interface-failure rate,
increasing from 0% to 75% in increments of 5%) and ordinates (a metric ranging between 0 and
1), we plot selected measurements generated from our models. Each graph compares four of the
configurations given in Table 3 against one of our metrics: update responsiveness (median),
update effectiveness, and update efficiency (average). We chose the median as a measure of
update responsiveness because the measured data tend to clump in distinct concentrations.
Computed averages proved less representative of the data. Figure 4(a) compares update
responsiveness from our two-party model against that from our single-SCM, three-party model,
for both polling and notification. Figure 4(b) provides a similar comparison, but substitutes the
results from our dual-SCM, three-party model in place of results from our one-SCM, three-party
model. Figures 4(c) and 4(d) compare update effectiveness using the same combinations. Figures
4(e) and 4(f) use the same combinations, but compare update efficiency.

The graphs reporting measures of responsiveness and effectiveness depict a system
undergoing a phase-transition from peak performance (where changes propagate quickly) to non-
performance (where changes fail to propagate). Regarding efficiency, the graphs show a system
that begins at its best, efficiency (without interfering failures) and then asymptotically
approaches zero efficiency as the failure rate increases toward 100%. The graphs (particularly
those showing update effectiveness) also depict several eccentricities, in the form of saw-tooth
behaviors. Using the analysis and visualization tools provided by Rapide, we were able to
investigate the causes underlying these eccentricities (see 5.3). Because the graphs can be
difficult to interpret, we compute summary statistics (see Table 5) for each of our six
combinations. Each summary statistic reflects the mean of a particular metric, when averaged
across all interface-failure rates, for a specified configuration. To indicate the uncertainty
associated with our measurements, we also give (see Table 6) the upper and lower bounds
(computed using an appropriate standard error formula for each metric) associated with selected
interface-failure rates (5%, 40%, and 75%) for each of our curves.

Dabrowski & Mills NIST WOSP 2002 Submission 1/25/2002

 12

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 10 20 30 40 50 60 70 80

Interface Failure Rate (%)

U
pd

at
e

Ef
fe

ct
iv

en
es

s

Two-Party Notification

Two-Party Polling

Three-Party Single-SCM
Notification

Three-Party Single-SCM
Polling

(c) Update Effectiveness of Two-Party vs. Three-Party
(Single-SCM)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80
Interface Failure Rate (%)

M
ed

ia
n

U
pd

at
e

R
es

po
ns

iv
en

es
s

Two-Party Notification

Two-Party Polling

Three-Party Dual-SCM
Notification

Three-Party Dual-SCM
Polling

(b) Median Update Responsiveness of Two-Party vs.
Three-Party (Dual-SCM)

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 10 20 30 40 50 60 70 80
Interface Failure Rate (%)

U
pd

at
e

Ef
fe

ct
iv

en
es

s

Two-Party Notification

Two-Party Polling

Three-Party Dual-SCM
Notification

Three-Party Dual-SCM
Polling

(d) Update Effectiveness of Two-Party vs. Three-Party
(Dual-SCM)

(e) Update Efficiency of Two-Party vs. Three-Party
(Single-SCM)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80
Interface Failure Rate (%)

A
ve

ra
ge

 U
pd

at
e

Ef
fic

ie
nc

y

Two-Party Notification

Two-Party Polling

Three-Party Single-
SCM Notification

Three-PartySingle-SCM
Polling

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80
Interface Failure Rate (%)

A
ve

ra
g

e
U

p
d

at
e

E
ff

ic
ie

n
cy

Two-Party Notification

Two-Party Polling

Three-Party Dual-SCM Notification

Three-Party Dual-SCM Polling

(f) Update Efficiency of Two-Party vs. Three-Party
(Dual-SCM)

Fig. 4. Graphs comparing combinations of architecture, topology, and consistency-maintenance mechanism.

(a) Median Update Responsiveness of Two-Party vs.
Three-Party (Single-SCM)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80
Interface Failure Rate (%)

M
ed

ia
n

U
pd

at
e

R
es

po
ns

iv
en

es
s

Two-Party
Notification

Two-Party Polling

Three-Party Single-
SCM Notification

Three-Party Single-
SCM Polling

Dabrowski & Mills NIST WOSP 2002 Submission 1/25/2002

 13

5.2 Understanding Relative Performance. Below,
we discuss the performance results for each of our three
metrics. The reader should recognize that engineering
trade-offs exist among these metrics: responsiveness,
effectiveness, and efficiency.

5.2.1 Responsiveness. Results in the first column of
Table 5 show that the various combinations of
architecture and behavior exhibit similar
responsiveness, where the mean median ranges between
0.663 and 0.530. Table 6, which reports uncertainty in
the results, confirms a similarity in responsiveness.
Similarity arises because interface failures interfere
with both polling and notification, requiring nodes to
rely on recovery mechanisms in the underlying

discovery protocols to restore consistency. Absence failures, notification proves more responsive
because change notices are issued to interested parties immediately after a change occurs, while
polling incurs some lag time. The presence of interface failures complicates the situation. First, if
a required interface is not operating when a notification is issued, then an update will be lost.
Second, when polls fail for an extended period (likely during high interface-failure rates), then
polling ceases and updates can be missed. Under both (polling and notification) mechanisms,
restoring consistency depends upon the recovery mechanisms in the discovery protocol.

The recovery
mechanisms, as implemented
in our models, exhibit similar
responsiveness: rediscovery
of lost nodes will occur
within 120 s after restoration
of a failed interface. In the
three-party case, periodic
(120 s) announcements by
each SCM (lazy-discovery
procedures) ensure
rediscovery. Similarly, in our
two-party model, the periodic
(120 s) Msearch queries by
each SU (aggressive-

discovery procedures) also ensure rediscovery. In this way, restoration of a failed interface leads
to rediscovery of lost nodes, and in the process to restoration of consistency in cached copies of
SDs. As the interface-failure rate increases beyond 30%, the rediscovery machinery tends to
dominate the responsiveness results (see 5.4 for further discussion of recovery mechanisms).

5.2.2 Effectiveness. Results in the second column of Table 5 show that certain combinations
lead to better update effectiveness, and Table 6 suggests that these differences could be
significant. Differences in effectiveness may be partly attributed to architecture and topology.
For example, each SD copy must propagate over either one link (two-party case) or two links
(three-party case). For this reason, the three-party architecture (single SCM) can prove more
vulnerable to interface failures (two links must be operational). This suggests that the two-party

0.1100.9270.587Three-Party Polling
(Dual SCM)

0.2210.9420.655Three-Party Notification
(Dual SCM)

0.2010.9110.530Three-Party Polling
(Single SCM)

0.3890.8940.601Three-Party Notification
(Single SCM)

0.2510.9730.615Two-Party Polling

0.2120.9210.663Two-Party Notification

Average
EfficiencyEffectivenessMedian

Responsiveness

Mean (across all interface-failure rates)

0.1100.9270.587Three-Party Polling
(Dual SCM)

0.2210.9420.655Three-Party Notification
(Dual SCM)

0.2010.9110.530Three-Party Polling
(Single SCM)

0.3890.8940.601Three-Party Notification
(Single SCM)

0.2510.9730.615Two-Party Polling

0.2120.9210.663Two-Party Notification

Average
EfficiencyEffectivenessMedian

Responsiveness

Mean (across all interface-failure rates)

Table 5. Summary statistics (mean across all
interface-failure rates) computed for each
curve given in the graphs shown in Figures
4(a) through 4(f).

Table 6. Depicts upper and lower bounds of the 95% C.I., computed using
appropriate statistical techniques, for each metric and all experiment
combinations at selected interface-failure rates.

EfficiencyEffectivenessResponsiveness

0.391
0.543

0.562
1.000

0.244
0.412

0.605
1.000

0.501
0.849

0.561
0.783

40%

0.056
0.096

0.099
0.143

0.043
0.083

0.042
0.095

0.076
0.138

0.111
0.162

75%

0.974
0.986

1.000
1.000

0.974
0.980

1.000
1.000

0.975
0.980

1.000
1.000

5%

0.033
0.103

0.035
0.290

0.043
0.173

0.099
0.504

0.031
0.230

0.065
0.220

40%

0.660
0.753

0.730
0.803

0.660
0.753

0.521
0.652

0.760
0.826

0.709
0.787

75%

1.000
1.000

0.970
0.977

1.000
1.000

0.993
0.993

1.000
1.000

0.970
0.977

5%

0.019
0.059

0.218
0.273

0.939
0.955

Three-Party Polling
(Dual SCM)

0.009
0.096

0.335
0.599

0.977
0.983

Three-Party Notification
(Dual SCM)

0.040
0.164

0.387
0.512

0.946
0.960

Three-Party Polling
(Single SCM)

0.033
0.320

0.827
1.000

0.939
0.955

Three-Party Notification
(Single SCM)

0.042
0.059

0.501
0.666

0.993
0.993

Two-Party Polling

0.031
0.354

0.354
0.467

0.954
0.966

Two-Party Notification

75%5%40%.
EfficiencyEffectivenessResponsiveness

0.391
0.543

0.562
1.000

0.244
0.412

0.605
1.000

0.501
0.849

0.561
0.783

40%

0.056
0.096

0.099
0.143

0.043
0.083

0.042
0.095

0.076
0.138

0.111
0.162

75%

0.974
0.986

1.000
1.000

0.974
0.980

1.000
1.000

0.975
0.980

1.000
1.000

5%

0.033
0.103

0.035
0.290

0.043
0.173

0.099
0.504

0.031
0.230

0.065
0.220

40%

0.660
0.753

0.730
0.803

0.660
0.753

0.521
0.652

0.760
0.826

0.709
0.787

75%

1.000
1.000

0.970
0.977

1.000
1.000

0.993
0.993

1.000
1.000

0.970
0.977

5%

0.019
0.059

0.218
0.273

0.939
0.955

Three-Party Polling
(Dual SCM)

0.009
0.096

0.335
0.599

0.977
0.983

Three-Party Notification
(Dual SCM)

0.040
0.164

0.387
0.512

0.946
0.960

Three-Party Polling
(Single SCM)

0.033
0.320

0.827
1.000

0.939
0.955

Three-Party Notification
(Single SCM)

0.042
0.059

0.501
0.666

0.993
0.993

Two-Party Polling

0.031
0.354

0.354
0.467

0.954
0.966

Two-Party Notification

75%5%40%.

Dabrowski & Mills NIST WOSP 2002 Submission 1/25/2002

 14

architecture will be more effective under severe interface failures, and our results support this.
On the other hand, the three-party architecture allows replication of SCMs, which provides a
greater number of paths through which information can propagate. This suggests (and our results
agree) that the three-party architecture with the dual SCM should provide superior effectiveness
over the single-SCM, three-party architecture. Our results also indicate that the dual-SCM three-
party architecture yields effectiveness close to that of the two-party architecture. We imagine that
adding SCMs will improve the effectiveness of the three-party architecture by increasing path
redundancy in the topology. Lacking this flexibility, the two-party architecture appears unable to
improve its effectiveness during interface failure.

Differences in effectiveness may also be attributed in part to consistency-maintenance
mechanism. In general, the polling mechanism should lead to better effectiveness than the
notification mechanism. Polling has a built-in robustness associated with periodic issuing of poll
requests. On the contrary, in both two and three-party architectures, each notification is issued
only once with no further action by the sender in response to a REX (recall Table 2). Our results
support this analysis for the two-party architecture and for the three-party architecture with a
single SCM. For example, the effectiveness of two-party notification suffers from situations
where the notice is lost but the SM is not lost (because announcements occur only every 1800 s
and thus an interface failure can be restored before the next announcement). In these situations,
rediscovery does not occur and the change will not be propagated (see 5.3).

Counter to the general trend, our results suggest that notification might be more effective
than polling for the three-party architecture with dual SCM. We suspect a combination of factors.
First, the dual-SCM topology has an increased number of paths through which information can
propagate. This factor should improve the effectiveness of both the polling and notification
mechanisms. A slight edge accrues to the notification mechanism because only the SCM-to-SU
link needs to be functioning for a change to propagate, while in the case of polling the SU-to-
SCM link must also be operational. Here, our model might be somewhat misleading because
notification in a real system uses TCP, which requires a path to be operational in both directions
before a connection can be established.

5.2.3 Efficiency. For a given combination of architecture and topology, we expect that
notification would be more efficient than polling. We also expect that the two-party architecture
would be more efficient than the three-party architecture, and that the single-SCM topology
would be more efficient than the dual-SCM topology. In general, the results in Table 5 support
these expectations, but with a few twists. The three-party, single-SCM architecture with the
notification mechanism proves more efficient than the two-party architectures because in Jini the
SD arrives with notification, while in UPnP notifications indicate only that a change has
occurred, requiring a SU to exchange a request-response message pair to obtain the updated SD.

Another twist arises because notification mechanisms need to recover from REXs associated
with refreshing remote resources. In all architectures, when using notification, each SU must
periodically refresh notification requests deposited on the SM (two-party case) or SCM (three-
party case). Interface failures lead to REXs during refresh attempts. A REX invokes retry
procedures: every 120 s until 540 s of continuous REX (three-party case) or every 120 s until a
SM is purged (two-party case).

5.3 Investigating Saw-Tooth Phenomena. A number of the curves shown in Figures 4(a)-
(f), exhibit saw-tooth phenomena, which are most pronounced for update effectiveness,
particularly for the two-party architecture with notification. Our uncertainty calculations suggest
that at failure rates above 40% these spikes may be attributed to random variations, which might

Dabrowski & Mills NIST WOSP 2002 Submission 1/25/2002

 15

be reduced by increasing the number of runs at each failure rate (currently 30) and the
corresponding number of data points (currently 5 SUs x 30 runs = 150). On the other hand,
spikes at lower failure rates appear more likely due to causal behavior in our models. For
example, the two-party architecture with notification exhibits a significant dip at 15% interface-
failure rate.

Using visualization and analysis tools included with Rapide, we examined the partially
ordered sets of events (POSETs) that contain complete causal behavior of our model. The
POSETs revealed that at the 15% interface-failure rate a large number of notifications were lost
when either the SM transmitter was inoperable (causing notifications to all SUs to be lost) or
when SU receivers were inoperable (causing lost notifications to individual SUs). Recovery from
notification loss depends upon a SU discarding a SM, and then rediscovering the SM, and
retrieving related SDs. A SU discards a SM when it fails to receive an announcement from the
SM within the specified time. Unfortunately, in many cases, a failed interface, which led to
notification losses, was repaired prior to the next SM announcement (announcements come every
1800 s). In these cases, the SU did not purge the SM, and therefore there was no rediscovery.
Without rediscovery, there was no mechanism to restore consistency. In such cases, lost
notifications led to inconsistencies that persisted to the deadline (and beyond).

Why does this behavior not appear with notification in the three-party architecture? The
three-party architecture requires a SM to first propagate a change to a SCM. The SCM then
propagates the change on to SUs that requested notification. While notification from SCM to SU
is unprotected, on failure a SM retries change propagation to a SCM. An inoperable SCM
transmitter leads not only to failure to propagate notifications to SUs, but also to failure to
confirm the change propagated by the SM. Absent confirmation, the SM retries the change for up
to 540 s, during which time the SCM transmitter might be restored. Each repeated change that
propagates to the SCM also causes notifications to be sent to the relevant SUs. Thus for SCM
transmitter failures, we conclude that robustness in change propagation from SM to SCM
compensates for lack of robustness in notifications from SCM to SU. No equivalent serendipity
occurs in the two-party architecture. These cases suggest relationships between the timing and
scope of failures and the role of recovery mechanisms in the different architectures.

5.4 Role of Recovery Mechanisms. Under hostile conditions, such as those in our
experiments, recovery mechanisms play a key role in consistency maintenance. For example, a
detailed analysis of results from our two-party architectural model show that at 30% failure rate
and below, interface failures tend to be restored more frequently within the REX retry period
associated with HTTP Get requests; thus, application recovery contributes substantially to update
effectiveness. Above 30% failure rate, application recovery tends to exhaust its allotted time,
leading a SU to discard knowledge of the SM. In such cases, update effectiveness depends
primarily on robustness mechanisms built into the discovery protocol. These observations led us
to design additional experiments to assess the trade-off in update effectiveness and efficiency for
various recovery mechanisms. We will report our findings in a later paper.

5.5 Recommendations for Improving ADLs. While the Rapide ADL provided useful
abstractions to represent and analyze the structure and behavior of service-discovery protocols
under failure, we recommend some improvements that apply generally to ADLs. First, this study
reinforces our previous recommendations [14] that component states should be selectively
exportable to allow data extraction and recording for analysis. Such an export mechanism would
also assist in implementing techniques to evaluate consistency conditions that involve state from
two or more components and that consider time, two important considerations when analyzing

Dabrowski & Mills NIST WOSP 2002 Submission 1/25/2002

 16

component interactions. We note that some ADLs include constraint-analysis engines that
consider time. Second, ADLs, and especially their tools, must provide representations of
behavior that can be evaluated efficiently. For example, to bound POSET size in this study, we
were forced to substitute procedure calls in place of Rapide constraint evaluation. Third, we
would find it convenient if ADL tools supported the same statistical techniques available from
commercial simulation systems. For example, ADL tools might include mechanisms to track and
summarize statistics about selected state variables. ADLs might also include machinery to apply
statistical tests to selected variables across experiment runs in order to automate halting
decisions. We expect to develop additional recommendations as our work proceeds.

6. Future Work
We envision our future work along three general directions. First, we intend to complete our
characterization of performance for various combinations of architecture, topology, and behavior
during failures. We will model the effects of message loss, which appear likely to differ
significantly from those described in this study, and we will assess the ramification of node
failure on discovery and recovery mechanisms in various architectures and topologies. Second,
we plan to propose, model, and evaluate selected changes to improve the performance of
discovery architectures and protocols in response to failure. Here, our goal is to increase the
fault-tolerance of such systems. We intend to implement and evaluate our most promising
suggested changes in publicly available service-discovery software. Third, we will expand our
generic structural model of service-discovery architectures to include message exchanges and
consistency conditions. We also intend to publish this model.

Along a different dimension, we hope to improve the methodologies available to design and
engineer distributed software systems. Part of our goal is to provide valuable recommendations
to improve ADLs, and associated tools. We might even see the need and opportunity to develop
our own ADL and analysis tools, especially designed for understanding collective behavior in
multi-party distributed systems. At present, many publicly available specifications come with
one or more reference implementations. We hope to demonstrate that architectural models help
to better understand the properties of distributed systems.

7. Conclusions
Emerging service-discovery protocols provide the foundation for software components to
discover each other, to organize themselves into a system, and to adapt to changes in system
topology. While likely suitable for small-scale commercial applications, questions remain
regarding the performance of such protocols at large scale, and during periods of high volatility
and duress, as might exist in military and emergency-response applications. In this paper, we
used architectural models to characterize the performance of selected combinations of system
topology and consistency-maintenance mechanism during catastrophic communication failure.
Further, we used behavioral analysis to investigate causes underlying observed performance. Our
initial investigations show significant differences in update effectiveness can be obtained by
varying aspects of the design (architecture, topology, consistency-maintenance mechanism, and
recovery strategies). Our results also suggest relationships among interface-failure rate, failure
timing, and recovery strategies. We plan additional experiments to investigate trade-offs between
effectiveness and efficiency when using various recovery strategies in both a two-party and
three-party architecture.

Dabrowski & Mills NIST WOSP 2002 Submission 1/25/2002

 17

8. References

[1] G. Bieber and J. Carpenter, “Openwings A Service-Oriented Component Architecture for

Self-Forming, Self-Healing, Network-Centric Systems,” on the http://www.openwings.org
web site.

[2] Salutation Architecture Specification, Version 2.0c, Salutation Consortium, June 1, 1999.
[3] Universal Plug and Play Device Architecture, Version 1.0, Microsoft, June 8, 2000.
[4] Ken Arnold et al, The Jini Specification, V1.0 Addison-Wesley 1999. Latest version is 1.1

available from Sun.
[5] Specification of the Home Audio/Video Interoperability (HAVi) Archiecture, V1.1, HAVi,

Inc., May 15, 2001.
[6] Service Location Protocol Version 2, Internet Engineering Task Force (IETF), RFC 2608,
June 1999.
[7] Specification of the Bluetooth System, Core, Volume 1, Version 1.1, the Bluetooth SIG, Inc.,

February 22, 2001.
[8] B. Miller and R. Pascoe, Mapping Salutation Architecture APIs to Bluetooth Service

Discovery Layer, Version 1.0, Bluetooth SIG White paper, July 1, 1999.
[9] C. Bettstetter and C. Renner, “A Comparison of Service Discovery Protocols and

Implementation of the Service Location Protocol”, Proceedings of the Sixth EUNICE Open
European Summer School: Innovative Internet Applications, EUNICE 2000, Twente,
Netherlands, September, 13-15, 2000.

[10] G. Richard, “Service Advertisement and Discovery: Enabling Universal Device
Cooperation,” IEEE Internet Computing, September-October 2000, pp. 18-26.

[11] B. Pascoe, “Salutation Architectures and the newly defined service discovery protocols from
Microsoft and Sun: How does the Salutation Architecture stack up,” Salutation Consortium
whitepaper, June 6, 1999.

[12] J. Rekesh, UPnP, Jini and Salutation - A look at some popular coordination framework for
future network devices, Technical Report, California Software Lab, 1999. Available online
from http://www.cswl.com/whiteppr/tech/upnp.html.

[13] Luckham, D. “Rapide: A Language and Toolset for Simulation of Distributed Systems by
Partial Ordering of Events,” http://anna.stanford.edu/rapide, August 1996.

[14] Dabrowski, C. and Mills, K., “Analyzing Properties and Behavior of Service Discovery
Protocols Using an Architecture-Based Approach”, Proceedings of Working Conference on
Complex and Dynamic Systems Architecture, Brisbane, Australia, December 2001.

